Identifying Graph Clusters using Variational Inference and links to Covariance Parameterisation
نویسنده
چکیده
Finding clusters of well-connected nodes in a graph is useful in many domains, including Social Network, Web and molecular interaction analyses. From a computational viewpoint, finding these clusters or graph communities is a difficult problem. We consider the framework of Clique Matrices to decompose a graph into a set of possibly overlapping clusters, defined as well-connected subsets of vertices. The decomposition is based on a statistical description which encourages clusters to be well connected and few in number. The formal intractability of inferring the clusters is addressed using a variational approximation which has links to meanfield theories in statistical mechanics. Clique matrices also play a natural role in parameterising positive definite matrices under zero constraints on elements of the matrix. We show that clique matrices can parameterise all positive definite matrices restricted according to a decomposable graph and form a structured Factor Analysis approximation in the non-decomposable case.
منابع مشابه
Identifying graph clusters using variational inference and links to covariance parametrization.
Finding clusters of well-connected nodes in a graph is a problem common to many domains, including social networks, the Internet and bioinformatics. From a computational viewpoint, finding these clusters or graph communities is a difficult problem. We use a clique matrix decomposition based on a statistical description that encourages clusters to be well connected and few in number. The formal ...
متن کاملGraph Partition Strategies for Generalized Mean Field Inference
An autonomous variational inference algorithm for arbitrary graphical models requires the ability to optimize variational approximations over the space of model parameters as well as over the choice of tractable families used for the variational approximation. In this paper, we present a novel combination of graph partitioning algorithms with a generalized mean field (GMF) inference algorithm. ...
متن کاملVariational Inference for Sparse Spectrum Approximation in Gaussian Process Regression
Standard sparse pseudo-input approximations to the Gaussian process (GP) cannot handle complex functions well. Sparse spectrum alternatives attempt to answer this but are known to over-fit. We suggest the use of variational inference for the sparse spectrum approximation to avoid both issues. We model the covariance function with a finite Fourier series approximation and treat it as a random va...
متن کاملInferring preference correlations from social networks
Identifying consumer preferences is a key challenge in customizing electronic commerce sites to individual users. The increasing availability of online social networks provides one approach to this problem: people linked in these networks often share preferences, allowing inference of interest in products based on knowledge of a consumer’s network neighbors and their interests. This paper evalu...
متن کاملIdentifying functional co-activation patterns in neuroimaging studies via poisson graphical models.
Studying the interactions between different brain regions is essential to achieve a more complete understanding of brain function. In this article, we focus on identifying functional co-activation patterns and undirected functional networks in neuroimaging studies. We build a functional brain network, using a sparse covariance matrix, with elements representing associations between region-level...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009